JPP Journal of Pharmacy And Pharmacology

Research Paper

Conjugation of curcumin-loaded lipid nanoemulsions with cell-penetrating peptides increases their cellular uptake and enhances the anti-inflammatory effects in endothelial cells

Viorel Simion^a, Daniela Stan^a, Cristina Ana Constantinescu^{a,b}, Mariana Deleanu^{a,c}, Emanuel Dragan^a, Monica Madalina Tucureanu^a, Ana-Maria Gan^a, Elena Butoi^a, Alina Constantin^a, Ileana Manduteanu^a, Maya Simionescu^a and Manuela Calin^a

^aInstitute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, ^bFaculty of Veterinary Medicine, University of Agronomic Sciences and Veterinary Medicine and ^cFaculty of Biotechnologies, University of Agronomic Sciences and Veterinary Medicine, Bucharest, Romania

Keywords

biodistribution; cell-penetrating peptides; curcumin; endothelial cells; lipid nanoemulsions

Correspondence

Manuela Calin, Institute of Cellular Biology and Pathology "Nicolae Simionescu", 8, BP Hasdeu Street, PO Box 35-14, 050568-Bucharest, Romania. E-mail: manuela.calin@icbp.ro

Received September 18, 2015 Accepted November 29, 2015

doi: 10.1111/jphp.12513

Abstract

Objectives To prepare and characterize *in vitro* and *in vivo* lipid nanoemulsions (LN) loaded with curcumin (Cm) and functionalized with a cell-penetrating peptide.

Methods Curcumin-loaded lipid nanoemulsions (CmLN) functionalized with a nona-arginine peptide (R9-CmLN) have been obtained, characterized and optimized for size, entrapment efficiency and in vitro Cm release. The interaction of R9-CmLN with human endothelial cells (HEC) was investigated using cultured EA.hy926 cells, and *in vivo* biodistribution studies were performed using C57BL6 mice.

Key findings When used in therapeutically relevant concentration, R9-CmLN have low haemolytic activity, low cytotoxicity on HEC, and show anti-inflammatory effects by reducing the monocytes adhesion to TNF- α activated HEC. Moreover, HEC uptake and internalization of R9-CmLN was significantly higher compared to the non-functionalized CmLN. *In vivo* biodistribution studies in mice revealed a higher accumulation of R9-CmLN in the liver and the lungs compared to CmLN and the body clearance of the both nanoformulations after 72 h.

Conclusions Cell-penetrating peptides-functionalized CmLN have superior characteristics compared to their non-functionalized counterparts: are more efficiently internalized by the cells, produces anti-inflammatory effects in HEC and when administrated *intravenously* in mice exhibit increased accumulation in the liver and the lungs, suggesting their potential therapeutic applications in different inflammatory pathologies localized in the liver or the lungs.

Introduction

Curcumin (1,7-bis (4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione, Cm) is a hydrophobic polyphenol isolated from the root of the *Curcuma longa*, a curry spice that has been widely studied and its high therapeutic potential well established. It was reported that Cm displays anti-inflammatory and antioxidant properties and antiproliferative, anti-invasive and anti-angiogenic activity.^[1] The anti-inflammatory properties are the consequence of modulation of the activity of several transcription factors such as nuclear factor (NF)-kB,^[2] activator protein (AP)-1,^[3] hypoxia inducible factor (HIF)-1,^[4] signal transducer and activator of transcription 3 (STAT 3),^[5] peroxisome proliferator-activated receptors (PPAR) γ ,^[6] NF erythroid 2-related factor 2 (Nrf2)^[7] and signalling pathways such as extracellular signal-regulated kinase (ERK),^[8] p38 mitogen-activated protein kinase (p38 MAPK)^[9] and Janus Kinase/Signal Transducer and Activator of Transcription (JAK/STAT).^[10] These effects result in down-regulation of